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A Vector Approach for Noise Parameter
Fitting and Selection of Source Admittances

Juan M. O’Callaghan and Jyoti P. Mondal, Senior Member, IEEE

Abstract —Simple vector concepts can be used to determine
noise parameters from measured data. The use of such concepts
leads to a simplification in the least-square fitting algorithm,
complete determination of the admittance loci that produce ill
conditioning, and simple criteria for the selection of source
admittances that minimize the sensitivity of the noise parame-
ters to experimental error. The sensitivity of the noise parame-
ters to small perturbations in the reflection coefficients is com-
pared for a group of source admittances selected with the
techniques described here and a group of admittances presented
in a previous work. The results show that a great reduction in
the error of the noise parameters can be achieved by properly
selecting the source admittances.

I. INTRODUCTION

HE dependence of the noise factor of a two-port on
the source admittance is given by

Ry
F=Fyn+ “’[(Gs —Go)’+(Bs— Bo)z]

G (1)

where

Fyqn =minimum noise figure of the device,
G, + jB, =source admittance for minimum noise figure,
R, =noise resistance,
Gy + jBg =source admittance.

Using this equation, the noise parameters (Fyuys
Ry,Gy, By) can be determined if F is measured with at
least four different sets of source admittances (Gg + jB,)
[1].

Most of the algorithms already developed use more
than four data sets to minimize the effect of measurement
errors. However, depending on the selection of the source
admittances, these algorithms may produce il condi-
tioning, i.e., a strong dependence of the results (noise
parameters) on small perturbations in the data (source
reflection coefficients, measured noise figures) caused by
measurement and /or computation errors, and inaccurate
extraction of parasitic elements. Ill conditioning occurs
whenever the source admittances lie very close to one of
the loci derived in Appendix II.
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Computer simulations in a previous work [2] indicated
that a proper distribution of source impedances in the
Smith chart (rather than an increase in the number of
impedances) is necessary to minimize the fitting errors;
however, no selection criteria were given.

The algorithm presented in this work uses a vector
approach which leads to a quasi-graphical interpretation
of the fitting process and an improved understanding of
the ill-conditioning phenomenon. A quantitative descrip-
tion of the degree of il conditioning that a group of
source admittances produces comes naturally from this
formulation, as well as criteria for the selection of source
admittances that avoid ill conditioning. The proposed
formulation accepts redundant and nonredundant data
and least-squares fitting is performed without an iterative
search.

II. ForMuULATION: PROJECTION THEOREM
Equation (1) can be easily rearranged to

5% + Bs?

2RBBS
—Ts—__ NO—G;

1
+[RN(G3+Bg)]G—S (2)

F=(Fyin —2RyGo) + Ry

where each of the four terms has a different dependence
on the source admittance. At this point, it is convenient to
define the following vectors:

i=1--n

FM=(FM1’FM2""7FMia"',FMn)T

V,=(1,1---1)7

7 G;i+ By} Gh+ B}

: G, = G, 7
Gl + B} G+ B2,
3 e e

I73=(B51,B52,~ ’BM’ ’Bsn)
G, Gy G, G,
1 1

7 1 1
4 = GSI,GSZ’ 7Gﬁ7 76—

sn

where Fy,,, Gy, and B, are the measured noise figure,
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L F "..-.EciV;) = Error Vector

Approximation Vector = %, C; V;

Fig. 1. Projection theorem in a 3-D space with two approximating
vectors ¥;¥;. The magnitude of the error vector is minimum when such
- vector is perpendicular to the plane defined by V] and V5.

conductance, and susceptance, respectively; associated
with the ith measurement set, and » is the total number
of sets measured. A proper fitting of (2) for all the »
different data sets is equivalent to the following vector
approximation:

Fy =CV, +CV,+CV,+Cl, (4
where _
Ci=(Fumn —2RyG) C,=Ry
C,=~2RyB, C,=Ry(G3+B2). (5)

The problem of finding the noise parameters for a best
fit of (1) can now be reduced to finding the coefficients
C,:--C4 to minimize the error vector between F,, and
the 11near combination of vectors V.. The magnitude of
this error vector is given by

12
2
Z (FML fltted t) (6)
i=1
where
Fflttedt Z ]t’ i=1)27~”7n

j=1

.and V}; is “the ith component of V; . This problem can be
solved w1th the help of the pr0]ect10n theorem in Hilbert
spacss (seé Fig. 1), which states that the magnitude of the
error vector is minimum when such a vector is orthogonal
to all vectors V, i.e.,

|

where { ) indicates the innet product of two vectors. By
using basic properties of the inner product, (7) can be
rearranged to

4
F,— Y. CV,

JoJ
j=1

,Vi>=0, i=1,-,4 (7

(Fy,¥p), i=1,--,4

M-

(V. V)C; =

7

]

=1
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Equation (8) defines a system of linear equations from
which the values of the C;’s can be found using standard
techniques. However, advantage can be taken of the fact
that the coefficient matrix in this system is symmetric and
positive definite. This allows the use of Cholesky’s method
[3] for solving a linear system of equations, which leads to
closed-form equations for the coefficients C; (refer to
Appendix ).

Once these coefficients are found the noise parameters
can be determined through

Ry=C,
By=—Cs/2Ry

Gy= €4 B?

Finn =C1 2R\ G,,. (9

The results obtained up to this point are very similar to
those reported in [4], where the vector formulation is not
used. For least-squares fitting purposes, such formulation
has the advantage of providing a simple description of the
linear system that. allows the use of Cholesky’s formulas
for the coefficients C;. However, the major advantage of
the vector approach can be found in the prevention of ill
conditioning and minimization of the sensitivity of the -
noise parameters to measurement €rrors. ’

and

III. TirL CONDITIONING AND ERROR SENSITIVITY

1 conditioning occurs when the vectors ¥, - - - ¥, in (3)
are not linearly independent. Then the coefficients C, - - -
C, in (4) are not uniquely defined. The 3-D equivalent to
this case (Fig. 1) occurs when the vectors V| and ¥, are
aligned. The orthogonal projection of F’ onto this line is
still uniquely defined, but the coefficients C; and C2,
which relate this projection to a linear combination of V1
and ¥, are not.

There are 11 possible ways in which the vectors ¥V, - - - ¥,
in (3) may not be linearly independent:

I71 = 0‘1]72 I71 =a,l;
171 = 0‘3174 ‘72 = 0‘4173
V,=asV, V,=ad,

Vi=a;V,+BV;

Vi=agV; + BsV,

I71 = a9173 + B9I74

Vo= ayVs + BiVs ;
Vi=ayV, + BuVs + vl (10)

where a;, B;, and y; are constants (other than zero) with
proper dimensions. Each of the vector equations in (10)
results in a family of admittance loci that can be repre-
sented as lines or circles in the admittance plane (refer to
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A—Error-free V.,V
B, C—Errors in V.,V .

Fig. 2. Effect of the errors on the plane defined by ¥] and V. Error
sensitivity is minimized when V] and ¥, are orthogonal.

Appendix II). The determination of the noise parameters
will be ill conditioned whenever all the admittances lie on
—or are very close to—one of these loci.

Caruso and Sannino [5] describe a technique to avoid ill
conditioning based on distributing the source admittances
along two different ill-conditioning loci belonging to the
same family. This is equivalent to avoiding only one
condition in (10). To ensure that no ill conditioning will
occur, none of the 11 conditions in (10) should be satis-
fied, or, equivalently, no ill conditioning locus will come
close to all selected source admittances. Since there are
11 different families of ill-conditioning loci and they have
up to threc degrees of freedom, this is difficult to check.

The vector approach presented here allows simple se-
lection criteria for the source admittances that guarantee
the linear independence among all vectors 171 +++¥, and
therefore ensures that none of the equations in (10) will
hold. These criteria also minimize the sensitivity of the
results (noise parameters) to perturbations in the data
(source reflection coefficients and noise figures). Further
insight into the mechanisms that translate errors from the
data to the results is needed to establish these selection
criteria.

In the 3-D analogy of Fig. 1, errors in the components
of the vectors I_/l’ and 172’ generate an uncertainty in
the plane that they define. This causes an uncertainty in
the projection of the vector F’' onto this plane, which is
the ultimate cause of errors in the coefficients C| and C5.
If there is some degree of freedom in the selection of V|
and V; (as'in V,, V5, and ¥, in (3)), they should be chosen
so that errors in their components have a minimum effect
in the plane that they define.

Fig. 2 illustrates the changes in a plane caused by
perturbations in the two vectors that define it. When no
errors are present in V] and V3, they generate the plane
A, whereas if some uncertainty exists (represented by
dotted spheres in Fig. 2) the resulting plane could have
any orientation included between planes B and C. The
angle between these two planes is a measure of the
uncertainty in plane A caused by uncertainties in V1 and
V2 This angle increases when the uncertainty in V1 and
| (radii of the dotted spheres in Fig. 2) increases or
when ¥/ and ¥V tend to be aligned. For a given uncer-
tainty in V1 and Vz, minimum uncertainty in the plane
that they define is obtained when the two vectors are
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orthogonal; for a given angle between 171’ and 172', the
uncertainty in the plane can be reduced by making the
ratio of the vector magnitude to the error magnitude
large.

The above discussion can be applied to the selection of
the source admittances that define V,, ¥, and ¥, in (3) as
follows:

1) The uncertainty in ¥,, V,, and ¥, should not be
heavily dependent on the uncertainty in the values
of the source reflection coefficient. Moreover, the
uncertainty in any vector should be much smaller
than its magnitude.

2) Ideally, ¥, - - - ¥, should be orthogonal. In practice,
the components of these vectors are dictated by the
value of the source admittances (eq. (3)) and they
cannot be chosen to achieve complete orthogonality.
The degree of orthogonality between two vectors is

AR

given by
e £ 7).
,( v 7D

Equation (11) can be identified as the cosine of the
angle between V, —, and V in a 3-D space. In our case
there are six possible combmatlons of cos(¥,, 1) Selec-
tion of the source admittances should involve a simulta-
neous minimization of the magnitude of all these fac-
tors. Note that this is equivalent to maximizing the
diagonal terms of the coefficient matrix in (8). Linear
system theory [3] shows that this will prevent a strong
* dependence of the resulting noise parameters on errors
in both source admittances and measured noise figures.

Nﬁl

7)) = (11)

IV. ExampPLE: PRACTICAL SELECTION CRITERIA

In this section, a selection procedure is described to
choose a set of seven source admittances. As shown in (3),
the components of Vl, V2, and V4 are always positive. This’
prevents their dot products from being zero; however,
good orthogonality among these vectors can be obtained
if ¥, and ¥, have one component much larger than the
rest and the dominant component in ¥, does not corre-
spond to the one in V. In this case, the admittances are
chosen to satisfy

G5+ Bs, _ G+ B§;
>> 2
Go G
1 1
_—

bl
Gs, Gy
under these assumptions:

i#1

i#2 (12)
1
Wl Ve
_ — [1+(Bs1/G51)][1+(Bsz/G52)2]
B T Y AN

cos(Vl,Vz) = cos(Vl,V4)

(13)
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By, and By, are chosen to be zero to minimize cos(V,,¥,).
The remaining source admittances have to be chosen to
satisfy (12) and to ensure good orthogonality of ¥ with
V,, V,, and ¥,. A possible choice is to make Bg; =0 and
Gg3=20 mS (matched load) and By, = - Bg;,;, and
Gg, = Gg;1y) i=4,6, (conjugate loads). The final
group of source reflection coefficients to be presented to
the transistor has been determined to be

Ty, = 0.7 <180° Iy, =0.7<0 Ty =0
Ty, =03 <—90° Tgs= 0.3 < +90°
Igs=0.6 < —90° Ty, =0.6 < +90°. (14)

Gradient optimization has been used to obtain this result.
The function minimized was defined as the maximum
absolute value of six possible cos(V;,¥) factors. For the
values shown in (14), this maximum was determined by
cos(V,,V,) = cos(V,,¥,) = 0.76 (equivalent to 40.5° in a
3-D space). This figure could be further reduced by
allowing |T;| and [Ty, to take a higher value. This would
increase the first component in ¥, and the second compo-
nent in 174, improving the orthogonality of both vectors
with ¥;; however, small errors in Ts; when its magnitude
is large provide large variations in Gg, and By, and,
therefore, a high uncertainty in 172, whose first component
is dominant with respect to the others. Similarly, small
variations in Iy, when its magnitude is large provide large
variations in 1/ Gy, and high uncertainty in 174; therefore,
it is important not to increase I'y; and Iy, beyond the
value for which acceptable orthogonality is achieved.

The values of Iy, and I'y; were optimized simultane-
ously in order to maintain their complementary nature.
This was also done for [, and [g,. In both cases,
optimum orthogonality was obtained when the magnitude
of the reflection coefficient was zero or unrealistically
small. This solution was not acceptable since the magni-
tude of ¥, was too small, making the uncertainty in this
vector comparable to its magnitude. Minimum boundaries
for |T'| had to be set in the optimization of I,, T'ys and
I, T's; to avoid this effect (JTgylpan = [T'gslvn = 0.3,
ITgslvan = I Tg7lmmn = 0.6). The optimum phase was found
to be +90° regardless of the limits in the magnitude. For
these phases, cos(V,,¥,) = cos(V,,V,).

The set of source admittances in (14) was intended to
be used in an experimental determination of our 0.25 wm
MESFET devices at Ka band. Some of these source
admittances had to be reselected because either the de-
vice was not stable or its measured noise figure was
judged too high to allow an accurate reading of the noise
figure meter; however, the criteria given in this and the
previous section proved to be helpful in ruling out admit-
tances that would have given rise to ill conditioning.

V. SOrTWARE DEVELOPED FOR NOISE
PARAMETER FITTING

The essential features of the software developed for
noise parameter fitting are shown in Fig. 3. First, the six

factors cos(¥,,¥,) are calculated at each frequency point.
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Start (All Data
Sets Enabled)

Calculate Orthogonality
Enabled Sets

!

Calculate Noise
Parameters for Best Fit with
Enabled Data Sets

i

Calulate Error for
Each Data Set

Select

Error Sensitivity
Analysis

No Yes

Enable/Disable
Some Data Sets

[

Fig. 3. Block diagram of the software developed for noise parameter

fitting.
TABLE 1
CompARISON OF RESULTS wiTH DIFFERENT CHOICES OF ENABLED
Data SETS

Enabled Fain Ry 1/Gy 1/B,

Data Sets (dB) €0)] 1)) (Q)  ERRX10*
3,4,7,9 0.4567 6.077 38.20 40.65 8.8
1,4,5,6 0.4539 4.893 41.71 39.65 3.8

All 0.4576 4.654 41.05 39.56 33

This gives the user an indication of how ill conditioned
the system is at each frequency. Second, the noise param-
eters are calculated at each frequency using (8) and (9).
Once the tentative noise parameters are known, they are
used to calculate the tentative noise figure (F,) for each
measurement set with (1). When F_,_ is known, an error

calc
function is calculated for each set using :

2
ERR_____l Z(Fmeas_Fcalc)
n’f ny Fmeas

(15)

n. being the number of frequency points.

A table is then generated displaying the values of these
error functions. Based on this information, the user has
the option of disabling some of the data sets and restart-
ing the fitting process. This provides protection against
errors not evenly distributed among data sets and an
opportunity to alter the values of cos(V,,¥)).
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TABLE II
ORTHOGONALITY AND ERROR SENSITIVITY FOR Two DIFFERENT GROUPS OF SOURCE ADMITTANCES

Case cos(V,V,) cos(Vy,Vs3) cos(V, V) cos(V,,V3) cos(V,, V) cos(V3, V)
1 0.97913 0.98398 0.99155 0.99193 0.95534 0.97627
2 0.75964 0 0.75964 0 0.33081 0

Error F, Error Ry Error [Ty Error < T

Case (Percent) (Percent) (Percent) (Degree)
1 3.57 71.86 19.75 4.78
2 3.34 12.60 8.11 2.36

Case 1 = source admittances as in [1, table 1] (nine sets).
Case 2 = source admittances as in (14) (seven sets).
The errors are obtained by perturbing the reflection coefficients with a vector of magnitude 0.02

and a phase varying in steps of 1°.

The software can also perform an error sensitivity anal-
ysis. In this analysis, the effect of errors is simulated by
adding to a source reflection coefficient a vector of small
magnitude (entered by the user) and varying phase
(0-360° with phase steps entered by the user), while
keeping the rest of source reflection coefficients constant.
The noise parameters are fitted for each possible value of
this perturbation vector and compared with their unper-
turbed values. This process is repeated until all the source
reflection coefficients have been perturbed and results in
the determination of the perturbed noise parameters that
deviate the most with respect to their unperturbed coun-
terparts. The errors between these two sets of noise
parameters give an indication of the sensitivity of the
noise parameters to errors in the source reflection coeffi-
cients. This perturbation analysis is done at each fre-
quency point.

VI. ExecuTtioN ExXAMPLE

The algorithm was tested with the measured data re-
ported in [1, table 1]. In that work, nine measurement sets
were taken, but only four of them were used at a time to
calculate the noise parameters. This was done for a
number of combinations of four data sets. In each case,
the noise parameters were obtained and an error function
was calculated to assess the agreement between these
noise parameters and the nine measurement sets. Proper
noise parameter values are assumed when the value of
such error function is small. By using sets 3, 4, 7, and 9,
the following results were reported [1]:

Fyyy = 0.4567 dB Ry =6.077 Q
1/G,=382 Q 1/B, = 40.65 Q.

The same results were found with our software by consid-
ering only the above sets in the determination of the noise
parameters. The relative RMS error among the measure-
ment sets, defined as

1 Fmeas_Fcac 2
ERR————\/Z(———;) (16)
n n Fmeas

with # (number of sets) =9, was 8.8 x 10~ %,
Table 1 compares these results with others obtained
with the computation approach presented here. First the

noise parameters considering all the sets are determined.
By progressive elimination of the set with highest relative
error ((F ... = F..c)/ Freas), @ combination of four data
sets is found whose error is lower than the one reported
in [1].

The results in Table I suggest that nonredundant noise
parameter determination may give acceptable results pro-
vided that all possible combinations (in this reported case
(9,)=126) are checked; however, this might be a slow
technique and it is unlikely to perform better than those
that minimize the overall error with noniterative tech-
niques.

The sensitivity of the noise parameters to errors in the
source reflection coefficients has been compared for the
source reflection coefficients shown in (14) and those
used in [1, table 1]. The noise figures in the latter were
substituted for the errorless values that they would have
with the noise parameters shown in the last row of Table
I of this paper. Similarly, the theoretical noise figures
were calculated for the group of reflection coefficients of
(14). A sensitivity analysis was performed in each case
following the procedure described in Section V. The
magnitude of the perturbation error was 0.02 and its
phase was changed in 1° steps. The maximum errors
between the perturbed noise parameters and the unper-
turbed ones are shown in Table II, together with the
associated cos(I7l, I—/j) factors. The group of reflection coef-
ficients of (14) presents a much lower error sensitivity
than the one in [1, table 1], even though the latter
contains two extra measurement sets. The values of
cos (171, 17}) show a clear correlgtio_r_l between s_ensitivity and
orthogonality of the vectors V|, V,, V5, and V.

VII. CoNCLUSION

Vector calculus concepts simplify the algorithm for
noise parameter fitting and provide simple criteria for the
selection of source admittances. Noise parameter fitting is
made with an algorithm that approximates a vector whose
components are the measured noise figures with a linear
combination of vectors whose components depend on the
source admittances. The coefficients of this linear combi-
nation determine the noise parameters through simple
equations. Ill conditioning occurs when two or more of
the approximating vectors (or linear combinations of them)
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tend to be aligned or when the uncertainty in a vector is
comparable to its magnitude. Conversely, low sensitivity
of the noise parameters to error in the source reflection
coefficients is achieved when the components of the ap-
proximating vectors do not change rapidly with small
perturbations in the source reflection coefficients and
when these vectors tend to be orthogonal. These two
criteria help select the source admittances. A: group of
seven source admittances has been chosen following these
rules. Its performance is compared with that of a group of
nine admittances used in a previous work [1]. Computer-
simulated errors in the reflection coefficients of the first
group generate errors in the noise parameters that are
much smaller than those obtained when the second group
_ is used.

APPENDIX 1
ForMuLASs FOR ¢, FROM CHOLESKY’S METHOD

Intermediate Variables

my = |V1|
My O my
1
My, = IVol* — mi, = m—zz [KV3Vy)—mymy, |

My = P [<V4V2> - m41m21]
2

- 2 2 2
Myy = \/|V3| —my—my

My3 = [<V4V3> T My Mg — m42m32]
33

- 2__ 2 2 2
m44-—\/|V4| My = Myy =~ My

(V,F,;> 1 . - _
oM y2=——[<V2FM>—m21y1];

Y1
my, My,

1 _
Y3 =— [<V3FM>—m31yl—m32y2]
M3

1 - -
4= —_[<V4FM>_ My Y1~ Mgy~ m43y3]-
My

Coefficients c,

c= b= —— vy - mye.]
4= 3= 3T My3Cy
Myq Mss
1
cy=——[yy—msc;—mye,l
Uy
1
= [vi~—mye, —mycs—myc,].
my,
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ArpeNDIX 11
Apmittance Loct Tuat Probuce ILL
CONDITIONING

G ! 2+ 2!
ey TP T aa
G,~a,B,=0

ap\?:  af
G32+(Bs_‘—21—0) =—E)'+

2
+

(1+ 311)2' }/1_1

day, @y

2
1
BSJ,_B_L) _
2ay,

o

2aq,
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