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A Vector Approach for Noise Parameter
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Abstract —Simple vector concepts can be nsed to determine
noise parameters from measured data. The use of such concepts

leads to a simplification in the least-square fitting algorithm,

complete determination of the admittance loci that produce ill

conditioning, and simple criteria for the selection of source
admittances that minimize the sensitivity of the noise parame-
ters to experimental error. The sensitivity of the noise parame-
ters to small perturbations in the reflection coefficients is com-
pared for a group of sonrce admittances selected with the
techniques described here and a group of admittances presented
in a previous work. The results show that a great reduction in

the error of the noise parameters can be achieved by properly

selecting the source admittances.

I. INTRODUCTION

T HE dependence of the noise factor of a two-port on

the source admittance is given by

‘= FMIN+~[(%G o)2+(%-~o)2] (1)

where

FMIN = minimum noise figure of the device,

Go+ ~l?o = source admittance for minimum noise figure,

RN = noise resistance,

G~ + jB~ = source admittance.

Using this equation, the noise parameters (FMIN,

RN, Go, Bo) can be determined if F k measured with at

least four different sets of source admittances (GS + jB,)

[1].

Most of the algorithms already developed use more

than four data sets to minimize the effect of measurement

errors. However, depending on the selection of the source

admittances, these algorithms may produce ill condi-

tioning, i.e., a strong dependence of the results (noise

parameters) on small perturbations in the data (source

reflection coefficients, measured noise figures) caused by
measurement and/or computation errors, and inaccurate

extraction of parasitic elements. 111 conditioning occurs

whenever the source admittances lie very close to one of

the loci derived in Appendix II.
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Computer simulations in a previous work [2] indicated

that a proper distribution of source impedances in the

Smith chart (rather than an increase in the number of

impedances) is necessary to minimize the fitting errors;

however, no selection criteria were given.

The algorithm presented in this work uses a vector

approach which leads to a quasi-graphical interpretation

of the fitting process and an improved understanding of

the ill-conditioning phenomenon. A quantitative descrip-

tion of the degree of ill conditioning that a group of

source admittances produces comes naturally from this

formulation, as well as criteria for the selection of source

admittances that avoid ill conditioning. The proposed

formulation accepts redundant and nonredundant data

and least-squares fitting is performed without an iterative

search.

II. FORMULATION: PROJECTION THEOREM

Equation (1) can be easily rearranged to

GS2 + BS2
F=(FMIN–2RNGO)+RN ~

U

– 2RNB0 ;

s s

+[RN(G; +B:)]$ (2)
s

has a different dependencewhere each of the four terms

on the source admittance. At this point, it is convenient to

define the following vectors:

i=l. ..n

3M=(FM1, FM2, +.. ,FMi,. ... FMn)T

P1=(l,l”””l)T

(G:l +B;l G:z + B:2
V2 =

G~l ‘ G,z ‘“””’

G: + B; G:n i- B:n

G,l ‘-””’ G~n
1

( B,2 B,, B~n
F3= # —

,1’ G~2’””” ’< ’””” ’G,n-)

where FM,, Gsi, and BsL are the measured noise

(3)

figure,
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z

~~) = Error
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Fig. 1. Projection theorem in a 3-D space with two approximating

vectors ~~ ~~. The magnitude of the error vector is minimum when such
vector is perpendicular to the plane defined by ~~ and ~~.

conductance, and susceptance, respectively, associated

with the ith measurement set, and n is the total number

of sets measured. A proper fitting of (2) for all the n

different data sets is equivalent to the following vector

approximation:

FM= Clvl + C2V2+ C3F3+ C4V4 (4)

where

Cl= (F~IN –2RNGO) Cz = RN

C3 = – 2RNB0 Cl= RN(G; + B:). (5)

The problem of finding the noise parameters for a best

fit of (1) can now be reduced to finding the coefficients

cl””” C4 to minimize the error vector between FM and

the linear combination of vectors ~. The magnitude of

this error vector is given by

[

1/2

~= f (FMi - ‘fitt.,i)z
1

(6)
~=1

where

F~itted ~= t Cjyi, i=l,2,. ””, n
j=l

and ~.i is the ith component of ~.. This problem can be

solved with the help of the projection theorem in Hilbert

spaces (see Fig. 1), which states that the magnitude of the

error vector is minimum when such a vector is orthogonal

to all vectors ~, i.e.,

((+c+v)=o‘=1”””4‘7)
where ( ) indicates the inner product of two vectors. By

using basic properties of the inner product, (7) can be

rearranged to

~ (~,~)cj=(fiM>q)> ,“””,4. (8)
i=l

j=l

Equation (8) defines a

which the values of the
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system of linear equations from

Ci’s can be found using standard ,

techniques. However, advantage can be taken of the fact ‘

that the coefficient matrix in this system is symmetric and

positive definite. This allows the use of Cholesky’s method

[3] for solving a linear system of equations, which leads to

closed-form equations for the coefficients Cj (refer to

Appendix I).

Once these coefficients are found, the noise parameters

can be determined through

RN= C2

B.= – C3/2RN

\

and

FMIN = CI+2RNG0. ($))

The results obtained up to this point are very similar to

those reported in [4], where the vector formulation is not

used. For least-squares fitting purposes, such formulaticm

has the advantage of providing a simple description of the

linear system that allows the use of Cholesky’s formuli~s

for the coefficients Cj. However, the major advantage of

the vector approach can be found in the prevention of ill

conditioning and minimization of the sensitivity of the

noise parameters to measurement errors.

III. ILL CONDITIONING AND ERROR SENSITIVITY

Ill conditioning occurs when the vectors VI “ “ “ fil in (3)

are not linearly independent. Then the coefficients Cl “ “ “

C4 in (4) are not uniquely defined. The 3-D equivalent to

this case (Fig. 1) occurs when the vectors ~{ and ~~ are

aligned. The orthogonal projection of ~ onto this line is

still uniquely defined, but the coefficients Cl and C2,

which relate this projection to a linear combination of ~(

and ~j, are not.

There are 11 possible ways in which the vectors PI . “ “ ~d

in (3) may not be linearly independent:

where ai, pi, and yi are constants (other than zero) with

proper dimensions. Each of the vector equations in (10)

results in a family of admittance loci that can be repre-

sented as lines or circles in the admittance plane (refe~ to
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Fig. 2. Effect of the errors on the plane defined by ~~ and ~~. Error
sensitivity is minimized when ~~ and ~~ are orthogonal.

Appendix II). The determination of the noise parameters

will be ,ill conditioned whenever all the admittances lie on

—or are very close to—one of these loci.

Caruso and Sannino [5] describe a technique to avoid ill

conditioning based on distributing the source admittances

along two different ill-conditioning loci belonging to the

same family. This is equivalent to avoiding only one

condition in (10). To ensure that no ill conditioning will

occur, none of the 11 conditions in (10) should be satis-

fied, or, equivalently, no ill conditioning locus will come

close to all selected source admittances. Since there are

11 different families of ill-conditioning loci and they have

up to three degrees of freedom, this is difficult to check.

The vector approach presented here allows simple se-

lection criteria for the source admittances that guarantee

the linear independence among all vectors VI . ~. ~x and

therefore ensures that none of the equations in (10) will

hold. These criteria also minimize the sensitivity of the

results (noise parameters) to perturbations in the data

(source reflection coefficients and noise figures). Further
insight into the mechanisms that translate errors from the

data to the results is needed to establish these selection

criteria.

In the 3-D analogy of Fig. 1, errors in the components

of the vectors P( and ~~ generate an uncertainty in

the plane that they define. This causes an uncertainty in

the projection of the vector F’ onto this plane, which is

the ultimate cause of errors in the coefficients C~ and Cj.

If there is some degree of freedom in the selection of V[

and V; (as in Vz, V3, and V. in (3)), they should be chosen
so that errors in their components have a minimum effect

in the plane that they define.

Fig. 2 illustrates the changes in a plane caused by

perturbations in the two vectors that define it. When no

errors are present in V{ and Vj, they generate the plane

A, whereas if some uncertainty exists (represented by

dotted spheres in Fig. 2) the resulting plane could have

any orientation included between planes B and C. The

angle between these two planes is a measure of the

uncertainty in plane A caused by uncertainties in ~[ and

~~. This angle increases when the uncertainty in ~{ and

~~ (radii of the dotted spheres in Fig. 2) increases or
when ~[ and ~j tend to be aligned. For a given uncer-

tainty in F( and ~j, minimum uncertainty in the plane

that they define is obtained when the two vectors are

orthogonal; for a given angle between ~~ and ~~, the

uncertainty in the plane can be reduced by making the

ratio of the vector magnitude to the error magnitude

large.

The above discussion can be applied to the selection of

the source admittances that define ~z, F3, and ~d in (3) as

follows:

1)

2)

The uncertainty in ~z, 73, and ~d should not be

heavily dependent on the uncertainty in the values

of the source reflection coefficient. Moreover, the

uncertainty in any vector should be much smaller

than its magnitude.

Ideally, VI “ “ “ ~q should be orthogonal. In practice,

the components of these vectors are dictated by the

value of the source admittances (eq. (3)) and they

cannot be chosen to achieve complete orthogonality.

The degree of orthogonality between two vectors is

given by

Equation (11) can be identified as the cosine of the

angle between ~. and ~. in a 3-D space. In our case

there are six possible combinations of cos (~, ~). Selec-

tion of the source admittances should involve a simulta-

neous minimization of the magnitude of all these fac-

tors. Note that this is equivalent to maximizing the

diagonal terms of the coefficient matrix in (8). Linear

system theory [3] shows that this will prevent a strong

dependence of the resulting noise parameters on errors

in both source admittances and measured noise figures.

IV. EXAMPLE: PRACTICAL SELECTION CRITERIA

In this section, a selection procedure is described to

choose a set of seven source admittances. As shown in (3),

the components of PI, ~z, and ~d are always positive. This”

prevents their dot products from being zero; however,

good orthogonality among these vectors can be obtained

if ~z and ~d have one component much larger than the

rest and the dominant component in ~z does not corre-

spond to the one in ~d. In this case, the admittances are

chosen to satisfy

G:l + B;l >> G:i + B2Si

G~l Gsi ‘
i#l

1 1
—>>—,
G Gsi

i#2
S2

under these assumptions:

COS(%F2)=COS(VJJ- 1
I;ll 6

(12)

c0s(72,~)- [l+(BSI/G
s,)2][l+ (Bs2/Gs2)2]

—

- (Gf:q(+) “

(13)
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11~1 and B~, are chosen to be zero to minimize cos (~a, 74).

The remai~ing source admittances have to be chosen to

satisfy (12) and to ensure good orthogonality of ~a with

VI, fiz, and ~d. A possible choice is to make B~3 = O and

G~3 = ;!0 mS (matched load) and B~i = – B~(i+ ~, and

G~l = (;~(i+ ~j, i =4,6, “ “’” (conjugate loads). The final
group of source reflection coefficients to be presented to

the transistor has been determined to be

rsl = 0.7<180°

rs4= 0.3< –90°

r~e= 0.6< –90°

Gradient optimization

r~2 = 0.7<0

rs5=o.3 <+900

r~, = 0.6< +90°.

has been used to obtain

The functi& minimized was defined as the

r~j = o

(14)

this result.

maximum.—
absolute value of six possible cos (~, ~) factors. For the

values shown in (14), this maximum was determined by

cos (VI, ~z) = cos (VI, ~d) = 0.76 (equivalent to 40.Y in a

3-D space). This figure could be further reduced by

allowing Ir~l I and Ir~2 I to take a_higher value. This would
increase the first component in V2 and the second compo-

nent in PO, improving the orthogonality of both vectors

with VI; however, small errors in r~l when its magnitude

is larg,e provide large variations in Gsl and B~l and,

therefore, a high uncertainty in ~2, whose first component

is dominant with respect to the others. Similarly, small

variations in r~z when its magnitude is large provide large

variations in 1/ G~2 and high uncertainty in ~d; therefore,

it is important not to increase r~l and r~2 beyond the

value for which acceptable orthogonality is achieved.

The values of rs~ and rs~ were optimized simultane-

ously in order to maintain their complementary nature.

This was also done for 17~6 and Fs,. In both cases,

optimum orthogonality was obtained when the magnitude

of the reflection coefficient was zero or unrealistically

small. This solution was not acceptable since the magni-

tude ctf 73 was too small, making the uncertainty in this

vector comparable to its magnitude. Minimum boundaries

for 1rl had to be set in the optimization of 17~4,r~~ and

r S6, rs7 tO avoid this effeCt (1rs41MIN = Irssl MIN = 0.3,

lrs61M)N = IrS~lMIN = 0.6). The optimum phase was found

to be + 90° regardless of the limits in the’ magnitude. For

these phases, cos (VI, ~z) = cos (~1, 74).

The set of source admittances in (14) was intended to

be used in an experimental determination of our 0.25 Km

MESFET devices at Ka band. Some of these source

admit tances had to be reselected because either the de-

vice was not stable or its measured noise figure was

judged too high to allow an accurate reading of the noise

figure meter; however, the criteria given in this and the

previous section proved to be helpful in ruling out admit-

tances that would have given rise to ill conditioning.

V. SOFTWARE DEVELOPED FOR NOISE

PARAMETER FITTING

The essential features of the software developed for

noise parameter fitting are shown in Fig. 3. First, the six——
factors cos (~, ~.) are calculated at each frequency point.
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Start (All Data
Sets Enabled)

5’
Calculate Noise

Parameters for Best Fit with
Enabled Data Sets

Calulate Error for
Each Data Set
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QError Sensitivity
Analysis

I I

L

&No Quit
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Enable/Disable
Some Data Sets

Fig. 3. Block diagram of the software developed for noise parameter
fitting.

TABLE I

COMPARISON OF RESULTS WITH DIFFERENT CHOICES OF ENASLED

DATA SETS

Enabled I/GO l/BO

Data Sets
$$

r;) (0) (Q) ERR X 104

3,4,7,9 0.4567 6.077 38.20 40.65 8.8
1,4,5,6 0.4539 4.893 41.71 39.65 3.8

All 0.4576 4.654 41.05 39.56 3.3

This gives the user an indication of how ill conditioned

the system is at each frequency. Second, the noise param-

eters are calculated at each frequency using (8) and (9).

Once the tentative noise parameters are known, they are

used to calculate the tentative noise figure (FC,IC) for eaclh
measurement set with (l). When FCalc is known, an error

function is calculated for each set using

nf being the number of frequency points.
A table is then generated displaying the values of these

error functions. Based on this information, the user hals

the option of disabling some of the data sets and restart-

ing the fitting process. This provides protection against

errors not evenly distributed among data sets and an

opportunity to alter the values of cos (~., ~.).
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TABLE II

ORTHOGONALITY AND ERROR SENSITIVITY FOR Two DIFFERENT GROUPS OF SOURCE ADMITTANCES

Case COS(V1, V2) Cos(vl, P’J Cos(vl,vl) COS(V2, VJ COS(V2, V4) COS(V3, V4)

1 0.97913 0.98398 o.99i55 0.99193 0.95534 0.97627
2 0.75964 0 0.75964 0 0.33081 0

Error Fm,~ Error RN Error Ire] Error < r.

Case (Percent) (Percent) (Percent) (Degree)

1 3.57 71.86 19.75 4,78

2 3.34 12.60 8.11 2.36

Case 1 = source admittances as in [1, table 1] (nine sets).

Case 2 = source admittances as in (14) (seven sets).
The errors are obtained bv ~erturbing the reflection coefficients with a vector of magnitude 0.02

and a phase varying in steps-of 1°. -

The software can also perform an error sensitivity anal-

ysis. In this analysis, the effect of errors is simulated by

adding to a source reflection coefficient a vector of small

magnitude (entered by the user) and varying phase

(0-360° with phase steps entered by the user), while
keeping the rest of source reflection coefficients constant.

The noise parameters are fitted for each possible value of

this perturbation vector and compared with their unper-

turbed values. This process is repeated until all the source

reflection coefficients have been perturbed and results in

the determination of the perturbed noise parameters that

deviate the most with respect to their unperturbed coun-

terparts. The errors between these two sets of noise

parameters give an indication of the sensitivity of the

noise parameters to errors in the source reflection coeffi-

cients. This perturbation analysis is done at each fre-

quency point.

VI. EXECUTION EXAMPLE

The algorithm was tested with the measured data re-

ported in [1, table 1]. In that work, nine measurement sets

were taken, but only four of them were used at a time to

calculate the noise parameters. This was done for a

number of combinations of four data sets. In each case,

the noise parameters were obtained and an error function

was calculated to assess the agreement between these

noise parameters and the nine measurement sets. Proper

noise parameter values are assumed when the value of

such error function is small. By using sets 3, 4, 7, and 9,

the following results were reported [1]:

F ~lN = 0.4567 dB RN= 6.077 fl

I/GO = 38.20 I/BO = 40.65 Q.

The same results were found with our software by consid-

ering only the above sets in the determination of the noise

parameters. The relative RMS error among the measure-

ment sets, defined as

with n (number of sets)= 9, was 8.8X 10-4.

Table I compares these results with others obtained

with the computation approach presented here. First the

noise parameters considering all the sets are determined.

By progressive elimination of the set with highest relative

error (( Fmea, – FC,lc)/F~eaJ, a combination of four data
sets is found whose error is lower than the one reported

in [1].

The results in Table I suggest that nonredundant noise

parameter determination may give acceptable results pro-

vided that all possible combinations (in this reported case

(94) = 126) are checked; however, this might be a slow
technique and it is unlikely to perform better than those

that minimize the overall error with noniterative tech-

niques.

The sensitivity of the noise parameters to errors in the

source reflection coefficients has been compared for the

source reflection coefficients shown in (14) and those

used in [1, table 1]. The noise figures in the latter were

substituted for the errorless values that they would have

with the noise parameters shown in the last row of Table

I of this paper. Similarly, the theoretical noise figures

were calculated for the group of reflection coefficients of

(14). A sensitivity analysis was performed in each case
following the procedure described in Section V. The

magnitude of the perturbation error was 0.02 and its

phase was changed in F steps. The maximum errors

between the perturbed noise parameters and the unper-

turbed ones are shown in Table II, together with the——
associated cos (~, ~) factors. The group of reflection coef-

ficients of (14) presents a much lower error sensitivity

than the one in [1, table 1], even though the latter

contains two extra measurement sets. The values of

cos (~, ~ ) show a clear correlation between sensitivity and

orthogonality of the vectors ~1, 72, 73, and ~d.

VII. CONCLUSION

Vector calculus concepts simplify the algorithm for

noise parameter fitting and provide simple criteria for the

selection of source admittances. Noise parameter fitting is

made with an algorithm that approximates a vector whose

components are the measured noise figures with a linear

combination of vectors whose components depend on the

source admittances. The coefficients of this linear combi-

nation determine the noise parameters through simple

equations. 111conditioning occurs when two or more of

the approximating vectors (or linear combinations of them)
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tend to be aligned or when the uncertainty in a vector is

comparable to its magnitude. Conversely, low sensitivity

of the noise parameters to error in the source reflection

coefficients is achieved when the components of the ap-

proximating vectors do not change rapidly with small

perturbations in the source reflection coefficients and

when these vectors tend to be orthogonal. These two

criteria help select the source admittances. A: group of

seven source admittances has been chosen following these

rules. Its performance is compared with that of a group of

nine admittances used in a previous work [1]. Computer-

simulated errors in the reflection coefficients of the first

group generate errors in the noise parameters that are

much smaller than those obtained when the second group

is used.

APPENDIX I

FORMULAS FOR c1 FROM CHOLESKY’S METHOp

Intermediate Variables

mll=lvll

(V,v,) (J’’J’, ) ( V,J”,)
mzl == mzl = mdl =

mll mll mll

m22’=R m32=+[(v3V2)-m31nz21]
1

md, Z= —[(nv,)-m,lm,l]
m 22

m33,= jlv312 - m~l - m:,

mdj’= ~[(V,v,)- m,lnz,l - m42m32]

——
(V,FM)

J)l = y2=+[(72FM)-m21Y1];
mll

y,=4[(v,FM)-m,,,,-m,,,,]——
m 33

y4=~[(z~M)-rn41 Y1-rn42,2-rn43,3]
m 44

Coefficients c,

m;,[Y3- m43c41c3=—

m:, [Y2 - m32c3 - m42c41c2=——

APPENDIX II

ADMITTANCE LOCI THAT PRODUCE ILL

CONDITIONING

() 12 1
G,–— +p:=—

2a1 4a;

(G,-+--)2+(BS+@-)2 =-$(l+P?)

(GS-+--)2+B:=+(~ -4P8)

G’+(B+%’)2=*+’lQ
(G-*)2+(B+%r=*’1+’’’5-
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